
Team #4984 page 0 of 35

Summary

We put forward a model for the traffic flow. This abstract model for the
traffic circle is discrete, which well describes the continuous traffic flow in
reality. This feature enables us to simulate the the movements of vehicles in
the model by a program which uses a Monte Carlo algorithm.

Based on this model, we come up with two metrics, which measure the
efficiency and the fairness of a traffic circle design. We consider not only the
efficiency but also the fairness, which prevents our design from an extreme
situation (such as the vehicles in one road have to wait for a long period of
time).

Besides the greedy strategy which is commonly used by drivers, that is
to enter the traffic circle as soon as possible, we will also discuss other two
strategies, namely the classified-lane design and the buffering design. In the
former design, we direct cars into different lanes. And in the latter, we use
the outmost lane as a buffering driveway, by which conflicts between vehicles
are avoided. At last, we conclude that these two designs are better than the
greedy one in most of the time.

Then, for every design, three patterns of traffic flow are used to test
every method we have taken into account. These three patterns have their
own meaning in real world, i.e, a random flow from all roads and two oriented
ones. Furthermore, we increase the intense of the these three representative
flows to test the sensitivity and stability of each design. Thus, through this
process, we can sift the best design out.

Finally, according to the test result of each design calculated by the al-
gorithm, we give a specific and detailed guide to realize our methods, which
are written in a technical summary in the appendix.

0

Traffic Circle

Team #4984

February 10, 2009

Contents

I Introduction 3

1 Description of the Problem 3

2 What is a Traffic Circle? 3

II Model and Metrics 3

3 Model of Traffic flow in a Traffic Circle 4
3.1 Assumptions . 4
3.2 Abstract Model of Traffic Flow 5

4 Metrics of Good Traffic Flows 8
4.1 Efficiency . 8
4.2 Fairness . 8

5 Some Analysis of Efficiency 8
5.1 Maximize the Speed . 8
5.2 A Seemingly Better Strategy Fails 9

6 Various Types of Traffic Circles and Corresponding Methods 11
6.1 Traffic Circles with One Lane 11
6.2 Traffic Circles with Several Lanes 11

III Solution for Various Kinds of Traffic Circles 11

1

Team #4984 page 2 of 35

7 Classified-Lane Design and Programme for Testing 12

8 Traffic Circles with Four Roads 12

9 Traffic Circles with Five Roads 17

IV Further Discussion 19

10 The Effect of Changing Lanes 19
10.1 The Buffering Design for Traffic Circles with Two Lanes . . . 19
10.2 Efficiency . 20

11 Comparison between Different Traffic Circles 23

12 Strengths 24

13 Weakness 24

V Conclusion 25

A Decoding Method 26

B Source Code 27

C Technical Summary 34

2

Team #4984 page 3 of 35

Part I

Introduction

1 Description of the Problem

Our task is to provide a mathematical stimulation of the traffic flow of a
traffic circle, and determine the optimal model that best approximates the
real scenario. Specifically, our task consists of following parts:

1. Provide a model for a traffic flow of a traffic circle.

2. Put forward several general methods of control traffic flow in, around
and out of the traffic circle concerned.

3. Offer various metrics at the traffic flow and method level.

4. Present an algorithm to work out the approximation of the traffic flow
of a specific traffic circle.

5. Compare the merits and demerits of respective specific methods gener-
ated from general methods. Choose the best way to control the traffic
flow under certain conditions.

2 What is a Traffic Circle?

A traffic circle is a central island around which there are several lanes, ranging
from one to three generally. Four or five roads are connected to the outmost
lane. Vehicles follow specific rules to drive in, around and out of the circle,
which are of vital importance in determining the efficiency and fairness of a
traffic circle.

3

Team #4984 page 4 of 35

Part II

Model and Metrics

3 Model of Traffic flow in a Traffic Circle

3.1 Assumptions

1. The speed of all vehicles running in, around and out of the circle as
well as on roads connected to the circle, is a fixed constant unless a
vehicle has to stop due to traffic rules. And all vehicles have the same
vehicle length.

2. Vehicles run on the right side of the road, driving in an anticlockwise
direction. In this case, to a certain road, vehicles run out first, and
then others run into the circle.

3. There is a upper limit of the number of vehicles running in a certain
lane of a traffic circle.

We say a lane is “full” if the number of vehicles reaches the limit,
otherwise it is “available”. The time for a vehicle to drive from its
current lattice to the next is called, in short, one “TCS”(one traffic
circle second).

4. In order to drive from a certain road to the nearest one, a vehicle has
to enter a traffic circle instead of merely making a turn as in the case
of a normal crossroad.

5. In the case of a traffic circle with more than one lanes, vehicles can enter
or exit an inner lane even if all the outer lanes are full, but penalty time
of one “TCS” will be added for such behaviors for the following reason:

It seems that all the lattices of the outer lane is occupied, but due to
the safety distance specified in traffic rules, vehicles in the inner lane
are able to pass through the outer lane as long as vehicles in the outer
lane remain stopped or run slower, the speed of the vehicle must be
reduced, and thus cause the penalty time.

6. No people walk in, around or out the traffic circle. Only cars are
considered in our model.

7. Twenty-four hours in a day can be divided into several periods, ac-
cording to the traffic conditions. Within each period, the probability

4

Team #4984 page 5 of 35

that there is one vehicle driving on a certain road following a certain
direction in a TCS is a constant. While the probability varies among
different periods.

The probability of a certain kind of vehicles of a one-driveway road is
the number of all such vehicles on the road over the number of moving
vehicles that the road can contain most. It is the same to the expecta-
tion of such vehicles emerging per TCS.It is easy to extend the notion
of probability of a one-driveway road to a multi-driveway one.

8. All drivers observe the traffic rules correctly.

3.2 Abstract Model of Traffic Flow

Suppose that the n lanes in a traffic circle are denoted by c0, c1, . . . , cn−1

from the inmost to the outmost, and the limit of the number of vehicles in
these lanes (mentioned in assumption 4) are l0, l1, . . . , ln−1 respectively. The
m roads are noted as r0, r1, . . . , rm−1.

According to assumption 1, the maximal number of vehicles that a given
lane can contain can be calculated from the length of the lane and the speed
of vehicles.

For each i = 0, 1, ..., n− 1,

li =
L(ci)

L(vehicle) + D(speed)

where L(ci), L(vehicle), D(speed) represent the length of ci, the average
length of a vehicle and the safety distance between two adjacent vehicles
running at the fixed speed mentioned in assumption 1.

We will discuss the patterns of the traffic flow (moving patterns) during
various periods of time and decide whether traffic lights should be introduced
or not.

As mentioned in assumption 4 and the Figure1, we conceive all lanes of
the traffic circle as composed of discrete lattices. A vehicle can enter a lane if
and only if a proper lattice in this lane is left empty, the traffic light is green
(if there is one) and other specific conditions of designed rules are satisfied.
Unless exact rules are designed to prevent potential conflict, we do not take
into account the fact that vehicles may alter lane when turning around the
circle for such behavior may cause traffic jam or accidents without strict
rules of proper behavior of altering lane. As is mentioned in assumption 5,
a vehicle can always exit the circle. Figure 2, 3, 4 illustrate the situations
within 2 TCSs.

5

Team #4984 page 6 of 35

Figure 1: a 2-lane traffic circle with 5 roads

Figure 2: original state and during the first TCS

6

Team #4984 page 7 of 35

Figure 3: at the end of the first TCS and during the second TCS

Figure 4: at the end of the second TCS

7

Team #4984 page 8 of 35

4 Metrics of Good Traffic Flows

4.1 Efficiency

The time wasted on waiting is primarily used to measure the efficiency of
a traffic circle. Thus, we take as a metric the average waiting time of all
vehicles, “AWT” for short. In a mathematical expression:

AWT =

∑
ti

N(vehicle)

where ti is the time wasted by the ith vehicle, including the waiting time
and the penalty time and N(vehicle) the number of vehicles passed through
the traffic circle.

4.2 Fairness

It is quite likely that the most efficient method of controlling traffic flow may
add to the benefit of vehicles in one road, while hampering that of vehicles in
other roads, the example of which will be provided in the later chapters. So
we introduce another important metric, that is the maximum of the average
waiting time of every road (MWR). However, efficiency remains the first
priority. We will take the fairness into consideration when the efficiencies of
two different methods are approximately equal.

MWR = max
1≤j≤n

∑
i∈rj

ti

Nj(vehicle)

where ti is the time wasted by the ith vehicle and Nj(vehicle) the number
of vehicles coming from raod rj.

5 Some Analysis of Efficiency

5.1 Maximize the Speed

Theorem 5.1 The faster the vehicles travel, the more efficient the traf-
fic flow is, which means every vehicle in the traffic flow should drive at the
speed mentioned in the assumption 1.

Proof The time for a certain vehicle in the circle to pass through de-
termines how long other vehicles have to wait before entering the circle. A
second waited by vehicles outside the circle is caused by all the vehicles in
the circle.

8

Team #4984 page 9 of 35

Thus, the waiting time caused by a certain vehicle is its passing time
divided by the number of vehicles in the circle.

Moreover, the time for a vehicle to pass through the circle equals the
length it should run divided by the speed.

In a random case, we consider the length that a certain vehicle travels as
the expectation of the length traveled by all vehicles, which is a constant.

As far as efficiency is concerned, we should maximize the product of the
number of vehicles in the circle and the speed.

Generally, the safety distance prescribed by laws is positively related to
the speed. We suppose that

sd = αs

where sd and s is the safety distance and the speed of a vehicle.
Subsequently, our task is reduced to maximize

s× l

a + sd
or

s× l

a + α× s

where l, a stand for the total length of all lanes in the traffic circle and
the vehicle length of vehicles. Since l, a, α are positive, the result reaches its
maximum while s is arrives at its upper bound.

5.2 A Seemingly Better Strategy Fails

People will argue that sometimes we should set aside the vacant lattices in the
traffic circle strategically, so that vehicles in the road, lining up and waiting,
is able to drive into the circle. Actually, after a delicate analysis, we come to
a conclusion which betrays people’s intuition.

Theorem 5.2 Any empty position in the circle should be occupied at
once if there is a vehicle ready to get in, which implies that a vehicle shall fill
the unoccupied position in the traffic circle in time when the rules designed
allow so.

Proof We calculate the total time wasted in the following two cases:

1. The vehicle queuing in the first place of a road always drives into the
nearest empty position in the traffic circle.

9

Team #4984 page 10 of 35

2. A vehicle other than the one mentioned above occupies the position.

The total time wasted by all vehicles in the first case differs from that of
the second one in the following aspects:

1. All vehicles waiting on the busy road do not have to wait after the
vehicle mentioned in the second case runs into the circle.

2. All vehicles outside the circle have to wait while the empty position runs
to the busy road and therefore the vehicle mentioned in the second case
fills in.

3. The difference between the passing time of the might-be-in vehicles in
circle in the two scenarios causes the waiting time of vehicles outside
the circle to differ.

Since, in reality, the number of vehicles that a lane of a traffic circle can
contain is more than twice the number of the roads that connects to the
circle, so the time in the second situation is twice more than that in the first
one. Additionally, more vehicles in the latter situation have to wait than
in the former one. Therefore, the total time wasted in the second aspect is
twice more than that of the first one. As mentioned in the proof of theorem
5.1, after calculating the difference in the third aspect divided by the number
of vehicles in the circle, we can take it as the time wasted by each vehicles
waiting outside. It is obvious that this time is less than one TCS. The time
mentioned in the first aspect, one TCS, is less than the half of the time in
the second aspect. So the time wasted in the third aspect is less than the
half of that of the second one. No matter whether the third one is wasted or
saved by the second case, the discussion above ensures that the efficiency in
the first case is higher than that in the second case.

Example 5.1 As mentioned in chapter 4.2, efficiency may cause ex-
treme unfairness. We now use Theorem 5.2 to give an example.

Consider a simple case of a traffic circle with one lane and three roads. All
vehicles from r1 running to r2 and all vehicles from r2 running to r1. Suppose
the probability of the appearance of vehicles of r1, r2 are both 1. Since no
empty lattice would be created at the conjunction of r0 and the circle as
well as the premise that any empty lattice created in other places would be
occupied at once, no matter what positive probability of the appearance of
vehicles from r0, we conclude that no vehicles from r0 can run into the circle
once the lane becomes full according to Theorem 5.2. In brevity, the vehicles

10

Team #4984 page 11 of 35

from r0 have to wait until the probability(i.e. the time period) changes,
which could require a considerably long time.

Though the example is a bit unusual in our real life, we can learn the
importance of fairness as a metric from it.

6 Various Types of Traffic Circles and Cor-

responding Methods

6.1 Traffic Circles with One Lane

Using theorem 5.1, vehicles already in a circle should not stop . Moreover,
vehicles can run out with no influence on others. Therefore, we have only to
consider on the rules of how vehicles run into the circle.

Using Theorem 5.2, empty position should be occupied at once, that is
when the empty lattice appears on the entrant from a road where vehicles
are waiting, the first vehicle should run in. If we set up some traffic lights
in the circles, sometimes empty lattice will not be filled at once. So traffic
lights are not recommended when efficiency is of primary concern.

6.2 Traffic Circles with Several Lanes

As mentioned in chapter 3.2, we now do not consider the situation where
vehicles change from one lane to another.

Traffic lights are not recommended for the same reason of chapter 6.1.
Two optional methods are offered here:

1. No difference exists between lanes. Vehicles run into the circle if at
least one lane is not full. We assume that if more than one lane is not
full, the vehicle runs into the inmost one available.

2. Vehicles with different distance to travel in the circle run into different
lanes, which suggests that a certain vehicle has one and the only one
lane on which it could run around the traffic circle.

11

Team #4984 page 12 of 35

Part III

Solution for Various Kinds of
Traffic Circles

7 Classified-Lane Design and Programme for

Testing

In the model given above, we design a series of rules to guide drivers to a
certain circle. For example, a rule specifies that drivers who intend to driver
the next road should drive in the outer lane and others the inner. We will
experiment with all possible rules and find out the best.

In order to approach the real scenario, we employ a Monte Carlo algorithm
to stimulate a traffic flow and find out the best rule-design.

Figure 5 shows the flowchart in calculating the efficiency and fairness
given the traffic flow pattern and the rules are given.

The source code refers to the appendix B.
We use this programme to calculate the two metrics of every possible

method in order to find the optimal one.

8 Traffic Circles with Four Roads

We consider six most representative situations in our real life:

1. N1(normal 1): the probabilities of all kinds of vehicles are the same
and the traffic is not busy. Table 1 shows probability matrix.

↗ r0 r1 r2 r3

r0 0 0.1 0.1 0.1
r1 0.1 0 0.1 0.1
r2 0.1 0.1 0 0.1
r3 0.1 0.1 0.1 0

Table 1: N1

The jth element in row i of the matrix means the possibility of vehicles
from road i to road j. This convenience will also be taken in the
following situations.

12

Team #4984 page 13 of 35

Figure 5: Algorithm Flowchart

13

Team #4984 page 14 of 35

2. N2(normal 2): the probabilities of all kinds of vehicles are the same
and the traffic is busy. Table 2 shows probability matrix.

↗ r0 r1 r2 r3

r0 0 0.2 0.2 0.2
r1 0.2 0 0.2 0.2
r2 0.2 0.2 0 0.2
r3 0.2 0.2 0.2 0

Table 2: N2

3. N3(normal 3): the probabilities of all kinds of vehicles are the same
and the traffic is extremely busy. Table 3 shows probability matrix.

↗ r0 r1 r2 r3

r0 0 0.3 0.3 0.3
r1 0.3 0 0.3 0.3
r2 0.3 0.3 0 0.3
r3 0.3 0.3 0.3 0

Table 3: N3

4. E1(east 1): the probability of vehicles to one road, say r0, is much
more than that of any other road, which might happen when there is
a business center on r0 during the rush hours in the morning. Table 4
shows probability matrix.

↗ r0 r1 r2 r3

r0 0 0.1 0 0.1
r1 0.3 0 0 0.1
r2 0.3 0.1 0 0.1
r3 0.3 0.1 0 0

Table 4: E1

5. E2(east 2): the probability of vehicles to one road, say r0, is much more
than that of any other road and the traffic is busier than the situation
above. Table 5 shows probability matrix.

6. SW1(southwest 1): the probability of vehicles to two nearby roads,
say r2, r3, is much more than that of the other two road, which might
happen when there is a business center between r0, r1 during the rush
hours in the morning. Table 6 shows probability matrix.

14

Team #4984 page 15 of 35

↗ r0 r1 r2 r3

r0 0 0.2 0 0.2
r1 0.6 0 0 0.2
r2 0.6 0.2 0 0.2
r3 0.6 0.2 0 0

Table 5: E2

↗ r0 r1 r2 r3

r0 0 0.1 0.2 0.3
r1 0.1 0 0.3 0.2
r2 0.1 0 0 0.1
r3 0 0.1 0.1 0

Table 6: SW1

7. SW2(southwest 2): the probability of vehicles to two nearby roads, say
r2, r3, is much more than that of the other two road and the traffic is
busier than the situation above. Table 7 shows probability matrix.

↗ r0 r1 r2 r3

r0 0 0.15 0.3 0.45
r1 0.15 0 0.45 0.3
r2 0.15 0 0 0.15
r3 0 0.15 0.15 0

Table 7: SW2

Figure 6 visualizes these situations.
Without losing of generality, we suppose that the outmost circle can con-

tain 20 vehicles, the inner 16(if the traffic circle has 2 lanes) and the inmost
12(if 3 lanes).

Fairness will be taken into account if the efficiency of a method is 10
percent deviated from the best.

Table 8 shows the codes of optimal methods(method are encoded into
numbers). In appendix A, we will show how to convert the codes into their
corresponding methods. And in appendixC, the methods corresponding to
each traffic condition are given.

Note that the method used in the one-lane situation is the most natural
way mentioned in the discussion in chapter 6.1.

15

Team #4984 page 16 of 35

Figure 6: Normal, East, Southwest

1 lane(TCS) 2 lanes(TCS) 3 lanes(TCS)
Type AWT MRW AWT MRW Code AWT MRW Code
N1 0.79 0.95 0.23 0.31 61 0.14 0.24 143+3
N2 122 140 1.21 1.78 51 0.51 1.18 47+35
N3 412 426 92.3 125 51 32.5 90.4 63+13
E1 43.9 130 0.38 0.84 204 0.10 0.15 143+13
E2 514 978 92 332 53 0.88 2.23 143+13

SW1 76.8 206 0.27 0.43 140 0.15 0.39 11+9
SW2 311 698 9.11 22.95 156 0.28 1.15 227+3

Table 8: Four Roads

16

Team #4984 page 17 of 35

After analyzing the data here, we can abstract a criterion for rebuilding
the traffic circle.

• For the normal situation (such as N1, N2 and N3), we build more lanes
to resolve a severe traffic jam.

• For a oriented traffic flow (such as E1, E2, SW1 and SW2), we should
set a specific rule to control the traffic. In addition, different number
of lanes resolves different tense of traffic flow.

9 Traffic Circles with Five Roads

We consider six similar most representative kinds of situations as discussed
in chapter8. The tables of probability are shown in Table 9,10,11,12,13 and
14:(the meaning of labeled types is similar)

↗ r0 r1 r2 r3 r4

r0 0 0.1 0.1 0.1 0.1
r1 0.1 0 0.1 0.1 0.1
r2 0.1 0.1 0 0.1 0.1
r3 0.1 0.1 0.1 0 0.1
r4 0.1 0.1 0.1 0.1 0

Table 9: N1

↗ r0 r1 r2 r3 r4

r0 0 0.2 0.2 0.2 0.2
r1 0.2 0 0.2 0.2 0.2
r2 0.2 0.2 0 0.2 0.2
r3 0.2 0.2 0.2 0 0.2
r4 0.2 0.2 0.2 0.2 0

Table 10: N2

By analogy with the chapter 8, we suppose that the outmost circle can
contain 20 vehicles, the inner 15(if the traffic circle has 2 lanes) and the
inmost 10(if 3 lanes). And fairness will be taken into account if the efficiency
of a method is 10 percent deviated from the best.

Table 15 shows the codes of optimal methods(method are encoded into
numbers).

17

Team #4984 page 18 of 35

↗ r0 r1 r2 r3 r4

r0 0 0.1 0 0 0.1
r1 0.2 0 0 0 0.1
r2 0.3 0.1 0 0 0.1
r3 0.3 0.1 0 0 0.1
r4 0.2 0.1 0 0 0

Table 11: E1

↗ r0 r1 r2 r3 r4

r0 0 0.2 0 0 0.2
r1 0.4 0 0 0 0.2
r2 0.6 0.2 0 0 0.2
r3 0.6 0.2 0 0 0.2
r4 0.4 0.2 0 0 0

Table 12: E2

↗ r0 r1 r2 r3 r4

r0 0 0.1 0.1 0 0
r1 0.1 0 0 0 0.1
r2 0.2 0.2 0 0 0
r3 0.3 0.3 0 0 0
r4 0.2 0.2 0 0 0

Table 13: SW1

↗ r0 r1 r2 r3 r4

r0 0 0.15 0.15 0 0
r1 0.15 0 0 0 0.15
r2 0.3 0.3 0 0 0
r3 0.45 0.45 0 0 0
r4 0.3 0.3 0 0 0

Table 14: SW2

18

Team #4984 page 19 of 35

1 lane(TCS) 2 lanes(TCS) 3 lanes(TCS)
Type AWT MRW AWT MRW Code AWT MRW Code
N1 15.0 25.8 0.66 0.81 1698 0.35 0.64 1374+103
N2 267 285 69.0 134 548 19.3 60.2 499+398
E1 83.9 280 0.61 0.98 1994 0.23 0.36 2599+86
E2 374 911 83.8 153 2269 3.19 5.93 1999+105

SW1 113 313 0.59 0.81 1974 0.22 0.49 1374+108
SW2 269 595 21.8 46.7 453 0.43 0.81 2749+237

Table 15: Five Roads

Note that the method of one lane is the most natural way due to the
discussion in chapter 6.1.

We can abstract almost the same conclusion mentioned at the end of the
chapter 8. However, as the vehicles become more in a 5-road traffic circle
than in a 4-road one, a two-lane design can not make significant improvement
to a one-lane design. This phenomenon implies us to find a better design to
handle this situation which we will discuss in chapter 10.

Part IV

Further Discussion

10 The Effect of Changing Lanes

We now take changing lanes into account. We assume that every road has
two driveways in order to classify vehicles with different destinations.

10.1 The Buffering Design for Traffic Circles with Two
Lanes

In Figure 7, vehicles from ri to ri+1 drive into the outer lane and others drive
into the inner one. Vehicles in the inner lane change to the outer lane at the
road before its destination, i.e., vehicles to ri changes to the outer lane at
the connection of the circle and ri−1.

The situation of five roads is similar.
Our method concerning changing lanes are deigned as follow. In a TCS,

four events that may happen are listed below,

19

Team #4984 page 20 of 35

Figure 7: Changing Lanes

1. A vehicle arrived at its destination of this lattice drives out immediately.

2. A vehicle in the inner lane changes to the outer. As describe in the
model of changing lanes above, the vehicles in the outer lane never
cross the conjunction of a road and the circle, the vehicle in the inner
lane will not conflict with others in the outer lane.

3. A vehicle whose destination is the next road drives in if the second
event does not take place there.

4. A vehicle at the head of a road drives into the circle if there is a vacant
lattice for it.

In assumption 5, we introduce a notion, penalty time, to punish the
vehicles conflict with the vehicles in the outer lane while they are entering to
the inner. However, the penalty time could be avoided if the road consists
of two driveways. Here is the new rule added to the rules above. It requires
drivers to drive into a specific driveway according to their destination, that is
to say, the drivers whose destination is the next road drive on the right way
and others the left. This ensures that no conflict will happen as is shown in
the Figure 8, 9, 10and 11 on page 21 and 22.

10.2 Efficiency

The programme for calculating the AWT here are almost the same as the
one in chapter 7. The source code refers to the appendix B.

Also, we use three kinds of situations to test this Buffering design.

20

Team #4984 page 21 of 35

Figure 8: Illustration 1

Figure 9: Illustration 2

21

Team #4984 page 22 of 35

Figure 10: Illustration 3

Figure 11: Illustration 4

22

Team #4984 page 23 of 35

1. N(normal): the probabilities of all kinds of vehicles are the same. The
table 16 shows the probability matrix on page 23.

↗ r0 r1 r2 r3

r0 0 0.2 0.2 0.2
r1 0.2 0 0.2 0.2
r2 0.2 0.2 0 0.2
r3 0.2 0.2 0.2 0

Table 16: Normal

2. E(east): the probability of vehicles to one road, say r0, is much more
than that of any other road. The table 17 shows the probability matrix.

↗ r0 r1 r2 r3

r0 0 0.2 0.2 0.2
r1 0.6 0 0.2 0.2
r2 0.6 0.2 0 0.2
r3 0.6 0.2 0.2 0

Table 17: East

3. SW(southwest): the probability of vehicles to two nearby roads, say
r0, r1, is much more than that of the other two roads. The table 18
shows the probability matrix.

↗ r0 r1 r2 r3

r0 0 0.2 0.4 0.4
r1 0.2 0 0.4 0.4
r2 0.2 0 0 0.2
r3 0 0.2 0.2 0

Table 18: Southwest

Table 19 on page 24 shows the AWT of the method in chapter 10. The
unit of data in the table is one TCS.

11 Comparison between Different Traffic Cir-

cles

After discussing several kinds of traffic circles, the result can be summarized
into three points.

23

Team #4984 page 24 of 35

N E SW
AWT 0.50 46.2 6.47

Table 19: Result

1. AWT and MWT of optimal design increase faster than the probability
of the appearance of vehicles. The bigger the probability, the faster
AWT and MWT increases, which implies that the efficiency of a traffic
circle depends sensitively on the tense of the traffic flow.

2. AWT and MWT decrease dramatically when there is one more lane,
which implies that the influence by adding a new lane to the circle is
remarkable. So if it is possible, we recommend the government to build
more lanes.

3. It is highly recommended to use the buffering design if the traffic circle
has already two lanes.

Finally, we have got the criteria for whether to set proper traffic rules or
rebuild the traffic circle which is stated here and in chapter 8 and chapter 9.

12 Strengths

• The simulation programme can be applied to a variety of situations.

• We use two metrics to judge a method and choose the most efficient
ones without losing fairness.

• Various situations are discussed to extend to common conclusions.

• We have strictly proved that traffic lights is not a necessity, a statement
also verified by the stimulation programme.

• The buffering design is easier to understand and more practical.

13 Weakness

• Some of the methods are a bit difficult to remember for drivers.

• The patterns of the traffic flow discussed are a little bit limited, though
several main situations have been involved. It can not be ensured that
a more complicated pattern will occur in real life.

24

Team #4984 page 25 of 35

• In the model that allows vehicles to change between lanes, we just
come up with a solution named the buffering design. Though it is
strong enough to handle almost every situation of a traffic circle which
has two lanes. Still, we did not step further to construct a stronger
design which involves the ideas in the buffering one.

Part V

Conclusion
In this paper, we, firstly, have put forward a model for the traffic flow and
imitated it by a Monte Carlo algorithm. This model is a good approximation
to the real traffic flow in life. Based on this model, we come up with two
metrics, which measures the efficiency and the fairness of a traffic circle
design. Also, two designs, i.e, classified-lane design and buffering design, are
provided to be choose. Then for every design, three patterns of traffic flow are
used to test every methods we take into account to solve this problem. Thus,
through this process, we can sift the best design out. Finally, according to
the metrics data of each design calculated by the algorithm, we give a specific
and detailed guide to realize our methods.

25

Team #4984 page 26 of 35

A Decoding Method

In a four-road and two-lane situation, we encode every classified-lane design
into a distinct number. For convenient, we consider the circle consists of 4
arcs. If the design declares that a vehicle covering only one arc in the circle
has to drive in the outer lane and others the inner can be converted into a
quaternary number 1111. The number 1 in the lowest position means the
vehicle from road 0 should enter the outer lane if it is going to exit at the
road 2 or 3 or 4. And the number in other position would be interpreted in
the same way. Therefore the decimal number 85 is the code of this design.
Decoding steps can be done in a reverse direction of the encoding.

For the three-lane situation, we encode a specific design into a pair of
numbers, for example 85+170 in decimal system or 1111+2222 in quaternary
system. It means that the vehicle from r0 to r1 shall enter the outmost lane
and to r2 the middle and r3 the inmost.

In a similar way, a design for a five-road traffic circle can be converted
into a quinary number or a pair of quinary numbers.

26

Team #4984 page 27 of 35

B Source Code

The programme for the classified-lane design.

#include <stdio.h>

#include <stdlib.h>

#define N 2

#define CL 20

#define M 5

#define MM 3125

#define T 500

#define C 1

#define X (0.1 * C)

#define Y (0.2 * C)

#define Z (0.3 * C)

int main() {

int i, j, k, t, temp, sa, c, sc, state, tstate;

int s[N][CL];

const int cl[N] = {15, 20};

const int tc[N][M] =

{

0, 3, 6, 9, 12,

0, 4, 8, 12, 16

};

int st[M][M] =

{

};

int q[M][T], qq[M], cc[M];

double dtemp;

double sm = 1000;

const double p[M][M] =

{

0, X, 0, 0, X,

Y, 0, 0, 0, X,

Z, X, 0, 0, X,

Z, X, 0, 0, X,

Y, X, 0, 0, 0

};

for (state = 0; state < MM; state++)

{

for (i = 0; i < M; i++)

27

Team #4984 page 28 of 35

{

for (j = 0; j < M; j++)

st[i][j] = 0;

qq[i] = cc[i] = 0;

}

for (i = 0; i < M; i++)

{

for (j = tstate % M; j > 0; j--)

st[i][(i + j) % M]++;

tstate /= M;

}

t = sa = c = 0;

for (i = 0; i < M; i++)

for (j = 0; j < T; j++)

{

dtemp = (double)rand() / RAND_MAX;

for (k = 0; k < M; k++)

if (dtemp < p[i][k]) break;

else dtemp -= p[i][k];

if (k < M)

{

q[i][j] = k;

cc[i]++;

c++;

}

else q[i][j] = -1;

}

for (i = 0; i < N; i++)

for (j = 0; j < cl[i]; j++)

s[i][j] = rand() % (M + 1) - 1;

sc = c

while (c)

{

for (j = 0; j < M; j++)

{

for (i = N - 1; i >= 0; i--)

if (s[i][tc[i][j]] == j)

{

s[i][tc[i][j]] = -1;

for (k = i + 1; k < N; k++)

if (s[k][tc[k][j]] != -1) sa++;

28

Team #4984 page 29 of 35

}

if (q[j][0] != -1 &&

s[st[j][q[j][0]]][tc[st[j][q[j][0]]][j]] == -1)

{

s[st[j][q[j][0]]][tc[st[j][q[j][0]]][j]]

= q[j][0];

q[j][0] = -1;

c--;

}

if (q[j][0] != -1)

{

sa++;

qq[j]++;

}

for (k = 1; k < T; k++)

if (q[j][k] != -1)

if (q[j][k - 1] == -1)

{

q[j][k - 1] = q[j][k];

q[j][k] = -1;

}

else

{

sa++;

qq[j]++;

}

}

for (j = 0; j < N; j++)

{

temp = s[j][cl[j] - 1];

for (k = cl[j] - 1; k > 0; k--)

s[j][k] = s[j][k - 1];

s[j][0] = temp;

}

t++;

};

if ((double)sa / sc < sm)

{

sm = (double)sa / sc;

printf("%4d ", state);

printf("%3.2f ", (double)sa / sc);

29

Team #4984 page 30 of 35

dtemp = 0;

for (i = 0; i < M; i++)

if (dtemp < (double)qq[i] / cc[i])

dtemp = (double)qq[i] / cc[i];

printf("%3.2f\n", dtemp);

}

}

return 0;

}

The programme for the buffering design.

#include<stdio.h>

#include<stdlib.h>

#define length 1000

#define ccc1 4 //ccc1 = 1/4 circumference inside

int roadl[4][length+1]={0},roadr[4][length+1]={0},

circle1[4*ccc1]={0}, wait,car[4],carnumber=0,carnum[4]={0},

// the matrix of probability

prob[4][4]={0,20,20,20,

20,0,20,20,

20,20,0,20,

20,20,20,0};

double waitpercar;

void initial () {

int i,j,p,pro[4];

wait=0;

for (i=0;i<4;i++) {

pro[0]=prob[i][0];

pro[1]=prob[i][0]+prob[i][1];

pro[2]=prob[i][0]+prob[i][1]+prob[i][2];

pro[3]=prob[i][0]+prob[i][1]+prob[i][2]+prob[i][3];

for (j=0;j<length;j++) {

p=rand()%100;

if (p<pro[0]) {

if (i==3) roadr[i][j]=1;

else roadl[i][j]=1;

30

Team #4984 page 31 of 35

carnum[i]++;

}

else if (p<pro[1]) {

if (i==0) roadr[i][j]=2;

else roadl[i][j]=2;

carnum[i]++;

}

else if (p<pro[2]) {

if (i==1) roadr[i][j]=3;

else roadl[i][j]=3;

carnum[i]++;

}

else if (p<pro[3]) {

if (i==2) roadr[i][j]=4;

else roadl[i][j]=4;

carnum[i]++;

}

else {roadl[i][j]=0;}

}

}

carnumber=carnum[0]+carnum[1]+carnum[2]+carnum[3];

}

int inroad (int i) {

int j=0,k,n=0;

if (carnum[i]==0) return 0;

if ((circle1[ccc1*i]==0)&&(roadl[i][0]!=0)) {

circle1[ccc1*i]=roadl[i][0];

roadl[i][0]=0;

carnum[i]--;

carnumber--;

}

else if (roadr[i][0]!=0) {

roadr[i][0]=0;

carnum[i]--;

carnumber--;

}

31

Team #4984 page 32 of 35

for (j=0;j<length;j++) {

if (roadl[i][j]==0) break;

car[i]++;

wait++;

}

if (j<length) {

for (k=j;k<length;k++)

roadl[i][k]=roadl[i][k+1];

}

for (n=0;n<length;n++) {

if (roadr[i][n]==0) break;

car[i]++;

wait++;

}

if (n<length) {

for (k=n;k<length;k++)

roadr[i][k]=roadr[i][k+1];

}

return 0;

}

int incir () {

int i;

for (i=0;i<4;i++) {

inroad(i);

}

return 0;

}

int outcir () {

int i,m;

m=circle1[4*ccc1-1];

for (i=4*ccc1-1;i>0;i--) {

circle1[i]=circle1[i-1];

}

circle1[0]=circle1[4*ccc1-1];

for (i=0;i<4;i++) {

if (circle1[i*ccc1]==(i+2)%4)

circle1[i*ccc1]=0;

32

Team #4984 page 33 of 35

}

if (circle1[2*ccc1]==4) circle1[2*ccc1]=0;

return 0;

}

int main () {

int n;

initial();

n=carnumber;

while (carnumber>0) {

outcir();

incir();

}

waitpercar=1.00*wait/n;

printf("car=%d\nwait=%d\nwait per car=%f\n",n,wait,waitpercar);

return 0;

}

33

Team #4984 page 34 of 35

C Technical Summary

We use the symbols denoted in chapter 3.2 for convenience. Moreover,ri → rj

refers to vehicles from ri to rj and “all” refer to all roads.
Four Roads Case

1. Two Lanes:

(a) If all roads are equal

not busy: we denote the inmost lane as c0 and outmost c1.

c1 : r0 → r1; r1, r2 → all.c0 : else

busy: c0 : r1, r3 → all.c1 : else

(b) If more vehicles rush to one road, say r0

not busy: c0 : r0, r2 → all.c1 : else

busy: c0 : r1, r3 → all.c1 : else

(c) If more vehicles rush to two roads,say r2, r3

not busy: c0 : r0, r2 → all; r3 → r2.c1 : else

busy: c0 : r0 → all; r2 → r0, r1; r3 → r2.c1 : else.

2. Three lane:

(a) If all roads are equal

not busy: c0 : r2 → all; r3 → r2.c1 : r1 → all; r3 → r0, r1.c2 : r0 →
all.

busy: c0 : r2 → all; r3 → r2.c1 : r1 → all.c2 : r0 → all; r3 → r0, r1.

Extremely busy: c0 : r3 → all.c1 : r1 → r0, r3; r2 → all.c2 : r0 →
all; r1 → r2.

(b) If more vehicles rush to one road, say r0

c0 : r2 → all; c3 → c2.c1 : r0 → r2, r3; r3 → r0, r1.c2 : r0 → r1; r1 →
all.

(c) If more vehicles rush to two nearby roads, say r2, r3

not busy: c0 : r2, r3 → all.c1 : r0 → r2, r3.c2 : r0 → r1; r1 → r2, r3.

busy: c0 : r2, r3 → all.c1 : r0 → r2, r3.c2 : r0 → r1; r1 → r2, r3.

Five Roads Case

1. Two lanes:

34

Team #4984 page 35 of 35

(a) If all roads are equal

not busy: c0 : else.c1 : r0 → r1, r2, r3; r1 → all; r2 → r3, r4; r3 →
r4, r0, r1; r4 → r0, r1.

busy: c0 : else.c1 : r0 → r1, r2, r3; r1 → all; r2 → r3; r3 → all.

(b) If more vehicles rush to one road, say r0

not busy: c0 : else.c1 : r0 → all; r1 → r2, r3, r4; r2 → all; r4 →
r0, r1, r2.

busy: c0 : r1 → r0; r2 → all; r3 → r2; r4 → r3.c1 : else.

(c) If more vehicles rush to two road, say r0, r1

not busy: c0 : r2 → r1; r3 → all; r4 → r3.c1 : else.

busy: c0 : r0 → r4; r1 → all; r2 → r1; r3 → r2; r4 → all.c1 : else.

2. Three lanes:

(a) If all are equal

not busy: c0 : r3 → all; r4 → r2, r3.c1 : r0 → r4; r1 → all; r4 →
r0, r1.c2 : else.

busy: c0 : r3 → r2; r4 → all.c1 : r0 → r4; r2 → all.c2 : else.

(b) If more vehicles rush to one road, say r0

not busy: c0 : r2 → r1; r3 → all.c1 : r0 → r2, r3, r4; r1 →
r0, r4; r4 → all.c2 : else.

busy: c0 : r3 → all; r4 → r3.c1 : r0 → all; r1 → r0, r3, r4; r4 →
r0, r1, r2.c2 : else.

(c) If more vehicles rush to two nearby road, say r0, r1

not busy: c0 : r3 → all; r4 → r2, r3.c1 : r0 → r4; r1 → r0, r3, r4; r4 →
r0, r1.c2 : else.

busy: c0 : r3 → r0, r1, r2.c1 : r0 → r3, r4; r1 → r0, r4; r4 → all.c2 :
else.

35

