June 19, 20, and 21, 2023. The area methods for G8, G9, G10.

Theorem 1 (the co-side theorem). Let M be the intersection of two lines $A B$ and $P Q$. Then $\overline{P M}: \overline{Q M}=\triangle P A B: \triangle Q A B$.

Theorem 2 (the co-angle theorem). If $\angle A B C=\angle X Y Z$ or $\angle A B C+\angle X Y Z=180^{\circ}$, we have $\Delta A B C / \Delta X Y Z=\overline{A B} \cdot \overline{B C} / \overline{X Y} \cdot \overline{Y Z}$.

Theorem 3. Let R be a point on line $P Q$. Then for any two points A and B,

$$
\Delta R A B=\frac{\overline{P R}}{\overline{P Q}} \Delta Q A B+\frac{\overline{R Q}}{\overline{P Q}} \Delta P A B .
$$

Problem 1. Prove Menelaus' theorem and Ceva's theorem using the co-side theorem.
Problem 2. Prove Pappus's theorem using the co-side theorem. Pappus's theorem: If the vertices of a hexagon fall alternately on two lines, the intersections of opposite sides are collinear.

Problem 3 (Easy). $A B C D$ is a convex quadrilateral with E, F being the points of trisection on $B C$ and G, H being the points of trisection on $D A$. Prove that $[A B C D]=3[E F G H]$

Problem 4 (Moderate). $A B C D$ is a convex quadrilateral with E, F being the points of trisection on $B C, G, H$ being the points of trisection on $D A, I, J$ being the points of trisection on $A B$ and K, L being the points of trisection on $C D$. The connectors of the corresponding trisection points on the opposite sides of $A B C D$ form quadrilateral $M N O P$. Prove that $[A B C D]=9[M N O P]$.

Problem 5 (Moderate, Poland MO 1965). All three diagonals $A D, B E, C F$ of a convex hexagon $A B C D E F$ bisect the area. Prove that $A D, B E, C F$ concur.

Problem 6 (Moderate). Point I is the incenter of triangle $A B C$. Prove that

$$
\frac{\overline{A I}^{2}}{\overline{A B} \cdot \overline{A C}}+\frac{\overline{B I}^{2}}{\overline{B C} \cdot \overline{B A}}+\frac{\overline{C I}^{2}}{\overline{C A} \cdot \overline{C B}}=1 .
$$

Problem 7 (Generalized Butterfly). A, B, C, D, E, F are six points on a circle. $M=A B \cap C D$; $N=A B \cap E F ; G=A B \cap C F ; H=A B \cap D E$. Show that $\overline{M G} \cdot \overline{B H} \cdot \overline{A N}=\overline{A G} \cdot \overline{N H} \cdot \overline{M B}$.

Problem 8 (Moderate, Cheng Zhong). G is the centroid of triangle $A B C . A_{1}, B_{1}, C_{1}$ are the intersection of rays $A G, B G, C G$ with the circumcircle of $A B C$. Suppose G is the midpoint of $A A_{1}$. Extend $A_{1} B, A_{1} C$ and intersect line $B_{1} C_{1}$ at C_{2}, B_{2} respectively. Prove that $\overline{B_{1} B_{2}} / \overline{C_{1} C_{2}}=$ $(\overline{A C} / \overline{A B})^{2}$.

Problem 9 (Difficult). In a cyclic convex quadrilateral $A B C D, E$ is the intersection of rays $A D, B C$, and F the intersection of rays $B A, C D$, and G the intersection of $A C, B D$. Prove that $\cos \angle A B C / \overline{B G}=\cos \angle B A C / \overline{A E}+\cos \angle B C A / \overline{C F}$.

