June 22 and 23, 2023. Convexity for G1, G2, G4.

Theorem 1 (Helly's theorem). For every n and d with $n \geq d+1$, and for every n convex subsets F_{1}, \ldots, F_{n} of \mathbb{R}^{d}, if every $d+1$ of them have non-empty intersection, then $F_{1} \cap \cdots \cap F_{n} \neq \varnothing$.
Theorem 2 (Radon's theorem). Any set of $d+2$ points in \mathbb{R}^{d} can be partitioned into two sets whose convex hulls intersect.
Problem 1 (Centerpoint). Let X be an n-point set in \mathbb{R}^{d}. A point $x \in \mathbb{R}^{d}$ is called a centerpoint of X if each closed half-space containing x contains at least $\frac{n}{d+1}$ points of X. Each finit point set in \mathbb{R}^{d} has at least one centerpoint.
Problem 2. Let K_{1}, \ldots, K_{n} be closed intervals parallel to the y-axis. Assume that for any $|I| \leq$ $d+2$ there exists a polynomial of degree at most d, the graph of which intersects all K_{i} where $i \in I$. Show that there exists a polynomial of degree at most d, the graph of which intersects all the intervals K_{1}, \ldots, K_{n}.
Problem 3 (The art of mathematics, Bollobas, Problem 127). Let C be a compact convex body in \mathbb{R}^{n} with non-empty interior. A maximal interval $[u, v]$ contained in C is a chord of C. Show that C contains a point c such that every chord $[u, v]$ through c satisfies $|c-u| \leq \frac{n}{n+1}|v-u|$.
Problem 4 (Yaglom \& Boltyanskii's Convex Figures, Problem 18).
(a) Given a bounded curve in the plane (possibly not connected), prove there exists a point O such that every line through O cuts off at least $1 / 3$ of the length of the curve.
(b) Given a bounded figure in the plane (possibly not connected), prove there exists a point O such that every line through O cuts off at least $1 / 3$ of the area.
Problem 5 (Sallee, Buchman-Valentine).
(a) Prove that a compact convex set of width 1 contains a segment of length 1 of every direction.
(b) Let C_{1}, \ldots, C_{n} be closed convex sets in the plane, $n \geq 3$, such that the intersection of every 3 of them has width at least 1 . Prove that $\cap_{i=1}^{n} C_{i}$ has width at least 1 .
Problem 6. Let $K \subset \mathbb{R}^{d}$ be a convex set and let $C_{1}, \ldots, C_{n} \subset \mathbb{R}^{d}, n \geq d+1$, be convex sets such that the intersection of every $d+1$ of them contains a translated copy of K. Prove that then the intersection of all the sets C_{i} also contains a translated copy of K.
Problem 7 (Kirchberger's theorem). Given disjoint finite sets A and B in \mathbb{R}^{d}. Suppose that for any set $S \subset \mathbb{R}^{d}$ with $|S| \leq d+2$, there exists a hyperplane which strictly separates $S \cap A$ and $S \cap B$. Then there exists a hyperplane which strictly separates the sets $S \cap A$ and $S \cap B$. Then there exists a hyperplane which strictly separates A and B.
Problem 8. Prove that if the intersection of each 4 or fewer among convex sets $C_{1}, \ldots, C_{n} \subset \mathbb{R}^{2}$ contains a ray then $\cap_{i=1}^{n} C_{i}$ also contains a ray. Show that the number 4 cannot be replaced by 3 .
Problem 9 (H. Jung's theorem). Each finite set $X \subset \mathbb{R}^{2}$ of diameter at most 1 is contained in some disc of radius $1 / \sqrt{3}$.
Problem 10. For a set $X \subset \mathbb{R}^{2}$ and a point $x \in X$, denote by $V(x)$ the set of all points $y \in X$ that can "see" x, i.e., points such that the segment $x y$ is contained in X. The kernel of X is defined as the set of all points $x \in X$ such that $V(x)=X$. A set with a nonempty kernel is called star-shaped.
(a) Prove that the kernel of any set is convex.
(b) Construct a nonempty set $X \subset \mathbb{R}^{2}$ such that each of its finite subsets can be seen from some point of X but X is not star-shaped.

