June 22 and 23, 2023. Convexity for G1, G2, G4.

Theorem 1 (Helly's theorem). For every n and d with $n \ge d+1$, and for every n convex subsets F_1, \ldots, F_n of \mathbb{R}^d , if every d+1 of them have non-empty intersection, then $F_1 \cap \cdots \cap F_n \ne \emptyset$.

Theorem 2 (Radon's theorem). Any set of d + 2 points in \mathbb{R}^d can be partitioned into two sets whose convex hulls intersect.

Problem 1 (Centerpoint). Let X be an n-point set in \mathbb{R}^d . A point $x \in \mathbb{R}^d$ is called a *centerpoint* of X if each closed half-space containing x contains at least $\frac{n}{d+1}$ points of X. Each finit point set in \mathbb{R}^d has at least one centerpoint.

Problem 2. Let K_1, \ldots, K_n be closed intervals parallel to the *y*-axis. Assume that for any $|I| \le d+2$ there exists a polynomial of degree at most *d*, the graph of which intersects all K_i where $i \in I$. Show that there exists a polynomial of degree at most *d*, the graph of which intersects all the intervals K_1, \ldots, K_n .

Problem 3 (The art of mathematics, Bollobas, Problem 127). Let C be a compact convex body in \mathbb{R}^n with non-empty interior. A maximal interval [u, v] contained in C is a chord of C. Show that C contains a point c such that every chord [u, v] through c satisfies $|c - u| \leq \frac{n}{n+1} |v - u|$.

Problem 4 (Yaglom & Boltyanskii's Convex Figures, Problem 18).

- (a) Given a bounded curve in the plane (possibly not connected), prove there exists a point O such that every line through O cuts off at least 1/3 of the length of the curve.
- (b) Given a bounded figure in the plane (possibly not connected), prove there exists a point O such that every line through O cuts off at least 1/3 of the area.

Problem 5 (Sallee, Buchman–Valentine).

- (a) Prove that a compact convex set of width 1 contains a segment of length 1 of every direction.
- (b) Let C_1, \ldots, C_n be closed convex sets in the plane, $n \ge 3$, such that the intersection of every 3 of them has width at least 1. Prove that $\bigcap_{i=1}^n C_i$ has width at least 1.

Problem 6. Let $K \subset \mathbb{R}^d$ be a convex set and let $C_1, \ldots, C_n \subset \mathbb{R}^d$, $n \ge d+1$, be convex sets such that the intersection of every d+1 of them contains a translated copy of K. Prove that then the intersection of all the sets C_i also contains a translated copy of K.

Problem 7 (Kirchberger's theorem). Given disjoint finite sets A and B in \mathbb{R}^d . Suppose that for any set $S \subset \mathbb{R}^d$ with $|S| \leq d+2$, there exists a hyperplane which strictly separates $S \cap A$ and $S \cap B$. Then there exists a hyperplane which strictly separates the sets $S \cap A$ and $S \cap B$. Then there exists a hyperplane which strictly separates the sets $S \cap A$ and $S \cap B$. Then there exists a hyperplane which strictly separates A and B.

Problem 8. Prove that if the intersection of each 4 or fewer among convex sets $C_1, \ldots, C_n \subset \mathbb{R}^2$ contains a ray then $\bigcap_{i=1}^n C_i$ also contains a ray. Show that the number 4 cannot be replaced by 3.

Problem 9 (H. Jung's theorem). Each finite set $X \subset \mathbb{R}^2$ of diameter at most 1 is contained in some disc of radius $1/\sqrt{3}$.

Problem 10. For a set $X \subset \mathbb{R}^2$ and a point $x \in X$, denote by V(x) the set of all points $y \in X$ that can "see" x, i.e., points such that the segment xy is contained in X. The kernel of X is defined as the set of all points $x \in X$ such that V(x) = X. A set with a nonempty kernel is called star-shaped.

- (a) Prove that the kernel of any set is convex.
- (b) Construct a nonempty set $X \subset \mathbb{R}^2$ such that each of its finite subsets can be seen from some point of X but X is not star-shaped.