June 26 and 29, 2023. Three tricks in geometry for G8, G9, G10.

Theorem 1 (1st trick). Points C_{0} and A_{0} are chosen on the sides $A B$ and $B C$ of the triangle $A B C$ respectively. Point B_{1} is the midpoint of the arc $A B C$ of the circumcircle of the triangle $A B C$. Prove that $\overline{A C_{0}}=\overline{C A_{0}}$ if and only if A_{0}, C_{0}, B_{1}, B lie on a circle.

Theorem 2 (2nd trick). Points C_{0} and A_{0} are on the sides $A B$ and $B C$ of the triangle $A B C$ respectively. Point I is the incenter of $A B C$. Point J is the midpoint of the arc $A C$ of the circumcircle of $A B C$. Prove that
(a) the circumcircle of $A_{0} B C_{0}$ passes through I if and only if $\overline{A C_{0}}+\overline{C A_{0}}=\overline{A C}$.
(b) the circumcircle of $A_{0} B C_{0}$ passes through J if and only if $\overline{B C_{0}}+\overline{B A_{0}}=\overline{B A}+\overline{B C}$.

Theorem 3 (3rd trick). Points X and Y move at constant speed (not necessarily equal) along two straight lines intersecting at O. Prove that the circumcircle of $X Y O$ passes through two fixed points O and Z, where Z is the center of the spiral similarity between the locations of X and Y.

Theorem 4 (Miquel's theorem). Given four lines $l_{1}, l_{2}, l_{3}, l_{4}$ (in general position). Denote by ω_{1} the circumcircle of the triangle formed by l_{2}, l_{3}, l_{4}. Analogously define $\omega_{2}, \omega_{3}, \omega_{4}$. Prove theses circles pass through the same point.

Problem 1 (Romanian Masters in Mathematics 2015 Day 2 Problem 4). Let $A B C$ be a triangle, and let D be the point where the incircle meets the side $B C$. Let J_{b} and J_{c} be the incenters of the triangles $A B D$ and $A C D$, respectively. Prove that the circumcenter of the triangle $A J_{b} J_{c}$ lies on the angle bisector of $\angle B A C$.
Problem 2 (All-Russian Olympiad 2005 Grade 11 Day 1 Problem 3). Let $A^{\prime}, B^{\prime}, C^{\prime}$ be points where the excircles touch the corresponding sides of the triangle $A B C$. Circumcircles of the triangles $A^{\prime} B^{\prime} C, A B^{\prime} C^{\prime}, A^{\prime} B C^{\prime}$ intersect the circumcircle of $A B C$ at points $C_{1} \neq C, A_{1} \neq A, B_{1} \neq B$ respectively. Prove that the triangle $A_{1} B_{1} C_{1}$ is similar to the triangle formed by the points where the incircle of $A B C$ touches its sides.

Problem 3 (Tournament of Towns 1999 Grade 10-11 Problem 4b). Let C_{0} and A_{0} be points on the sides $B A$ and $B C$ of the triangle $A B C$ respectively, and let the points M and M_{0} be the midpoints of segments $A C$ and $A_{0} C_{0}$. Prove that if $A C_{0}=C A_{0}$, then the line $M M_{0}$ is parallel to the bisector of $\angle A B C$.

Problem 4 (IMO 2013 Day 1 Problem 3). Let the excircle of triangle $A B C$ opposite the vertex A be tangent to the side $B C$ at the point A_{1}. Define the points B_{1} on $C A$ and C_{1} on $A B$ analogously, using the excircles opposite B and C, respectively. Suppose that the circumcenter of triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of triangle $A B C$. Prove that triangle $A B C$ is right-angled.
Problem 5 (All-Russian Olympiad 2012 Grade 9 Day 2 Problem 2). The points A_{1}, B_{1}, C_{1} lie on the sides sides $B C, A C$ and $A B$ of the triangle $A B C$ respectively. Suppose that $A B_{1}-A C_{1}=$ $C A_{1}-C B_{1}=B C_{1}-B A_{1}$. Let I_{A}, I_{B}, I_{C} be the incenters of triangles $A B_{1} C_{1}, A_{1} B C_{1}$ and $A_{1} B_{1} C$ respectively. Prove that the circumcenter of triangle $I_{A} I_{B} I_{C}$ is the incenter of triangle $A B C$.

Problem 6 (All-Russian Olympiad 2012 Grade 11 Day 2 Problem 2). The points A_{1}, B_{1}, C_{1} lie on the sides $B C, C A$ and $A B$ of the triangle $A B C$ respectively. Suppose that $A B_{1}-A C_{1}=$ $C A_{1}-C B_{1}=B C_{1}-B A_{1}$. Let O_{A}, O_{B} and O_{C} be the circumcenters of triangles $A B_{1} C_{1}, A_{1} B C_{1}$ and $A_{1} B_{1} C$ respectively. Prove that the incenter of triangle $O_{A} O_{B} O_{C}$ is the incenter of triangle $A B C$ too.

Problem 7 (IMO Shortlist 2012 G6). Let $A B C$ be a triangle with circumcenter O and incenter I. The points D, E and F on the sides $B C, C A$ and $A B$ respectively are such that $B D+B F=C A$ and $C D+C E=A B$. The circumcircles of the triangles $B F D$ and $C D E$ intersect at $P \neq D$. Prove that $O P=O I$.

Problem 8 (All-Russian Olympiad 2011 Grade 11 Day 2 Problem 4). Let N be the midpoint of arc $A B C$ of the circumcircle of triangle $A B C$, let M be the midpoint of $A C$ and let I_{1}, I_{2} be the incenters of triangles $A B M$ and $C B M$. Prove that points I_{1}, I_{2}, B, N lie on a circle.

Problem 9 (IMO 1985 Day 2 Problem 5). A circle with center O passes through the vertices A and C of the triangle $A B C$ and intersects the segments $A B$ and $B C$ again at distinct points K and N respectively. Let M be the point of intersection of the circumcircles of triangles $A B C$ and $K B N$ (apart from B). Prove that $\angle O M B=90^{\circ}$.

Problem 10 (All-Russian Olympiad 2000 Grade 10 Day 1 Problem 3). In an acute scalene triangle $A B C$ the bisector of the acute angle between the altitudes $A A_{1}$ and $C C_{1}$ meets the sides $A B$ and $B C$ at P and Q respectively. The bisector of the angle B intersects the segment joining the orthocenter of $A B C$ and the midpoint of $A C$ at point R. Prove that P, B, Q, R lie on a circle.

Problem 11 (IMO Shortlist 2006 G9). Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of a triangle $A B C$ respectively. The circumcircles of triangles $A B_{1} C_{1}, B C_{1} A_{1}, C A_{1} B_{1}$ intersect the circumcircle of triangle $A B C$ again at points A_{2}, B_{2}, C_{2} respectively ($A_{2} \neq A, B_{2} \neq B, C_{2} \neq C$). Points A_{3}, B_{3}, C_{3} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of the sides $B C, C A$, $A B$ respectively. Prove that the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are similar.

Problem 12 (All-Russian Olympiad 2001 Grade 10 Day 2 Problem 3). Points A_{1}, B_{1}, C_{1} inside an acute-angled triangle $A B C$ are selected on the altitudes from A, B, C respectively so that the sum of the areas of triangles $A B C_{1}, B C A_{1}$, and $C A B_{1}$ is equal to the area of triangle $A B C$. Prove that the circumcircle of triangle $A_{1} B_{1} C_{1}$ passes through the orthocenter H of triangle $A B C$.

Problem 13 (Iranian National Mathematical Olympiad 1997 Round 4 Problem 4). Point E is chosen on the arc $A C$ of the circumcircle Ω of triangle $A B C$. Let I_{a} and I_{c} be the incenters of triangles $A E B$ and $C E B$, let Ω^{\prime} be the circle tangent to $A B, C B$ and Ω. The circles Ω and Ω^{\prime} meet at T_{b}. Prove that I_{a}, I_{c}, E, T_{b} lie on a circle.

Problem 14 (IMO 2005 Day 2 Problem 5). Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $B C$ not parallel with $D A$. Let two variable points E and F lie of the sides $B C$ and $D A$, respectively and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Prove that the circumcircles of the triangles $P Q R$, as E and F vary, have a common point other than P.

Problem 15 (All-Russian Olympiad 2014 Grade 10 Day 1 Problem 4). Given a triangle $A B C$ with $A B>B C$, let Ω be the circumcircle. Let M, N lie on the sides $A B, B C$ respectively, such that $A M=C N$. Let K be the intersection of $M N$ and $A C$. Let P be the incenter of the triangle $A M K$ and Q be the K-excentre of the triangle $C N K$. If R is midpoint of the arc $A B C$ of Ω then prove that $R P=R Q$.

